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Abstract 

The algebra SO(6,1) is considered as a unification of SO(6), which is isomorphic to 
SU(4) = SU(3), and the de Sitter algebra SO(4,1). The latter replaces the Poincar6 
algebr~ as the algebra of the group of motions of physical space-time. A representation of 
S0(6,1) is constructed, which, on restriction to SU(3), decomposes into the direct sum of 
all SU(3) representations, each occurring just once in the decomposition. The expectation 
values of the mass-squared operator, when evaluated in the octet, give accurate m a s s  

formulae for the octets of 1- and 2 + meson resonances. 

1. Introduction 

One of the problems of elementary particle physics is to understand the 
connection, if any, between the groups of motion L of physical space-time 
and the internal symmetry groups, such as SU(3), the motivation being 
that some explanation may be found for the spin values and mass differences 
of  particles in an SU(3) multiplet. In attempting to find a group which 
contains both the internal and external symmetry groups as subgroups, the 
obvious approach to an economical solution is to find unifications (Flato 
& Sternheimer, 1966) U(L, I)  of L and I, so that the number of  excess and 
therefore uninterpreted generators is kept to a minimum. Although the 
most plausible Candidate for L, namely P the Poincar6 group, has en- 
countered serious difficulties (O'Raifeartaigh, 1965a, b, c; Jost, 1966; 
Segal, 1967), it cannot be discounted entirely since the 'no-go'  theorems on 
the spectrum of the mass-squared operator pup s in an irreducible rep- 
resentation (I.R.) of the unifying algebra depend on the integrability of  
the algebra in a given representation space (Flato & Sternheimer, 1969). 

The difficulties with the Poincar6 group have become sufficiently acute 
to consider the possibility of replacing P by one of the de Sitter groups (both 
denoted by D) which are isomorphic to S0(4 ,1 )  and SO(3,2). Nothing 
can be done locally to distinguish between P and D as the group of motion 
of space-time, and both de Sitter groups tend to P in the local limit defined 
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by the radius of the de Sitter universe approaching infinity. Furthermore, in 
this limit, 

lira R -2 C2 = p~p~ 

where C2 is the second-order Casimir operator of D, which is not nilpotent 
(Roman, 1966). It is the nilpotency of P in its adjoint action on the unifying 
algebra which leads to the results of the theorems mentioned above. 
Theories using D have met with some success in finding a discrete mass 
formula for particles within a multiplet (Halbwachs, 1967). Vigier (1969) 
has considered finite dimensional representations of S0(6,1), the algebra 
studied here, and has found a mass relation as a polynomial constraint 
in an over complete set of commuting operators. 

Since there is no obvious choice for a unifying algebra, the problem of 
finding all possible unifications over the real field of D and a real simple 
internal symmetry algebra S was considered by Tait & Cornwell (1971). 
It was found that there are no unifications of D and SU(3). The algebra 
S0(6,1) is a unification of S0(4,1) and SO(6) which is isomorphic to 
SU(4), which, in turn, contains SU(3) as a subalgebra. 

The concept of a unification, although useful as a minimality condition, 
is bound to lead to difficulties in interpretation because of the possibility 
of a non-zero intersection between D and S. Vigier (1969) has put forward 
a solution to this problem by assuming that there are two de Sitter groups 
DI and D2 which are respectively the right and left translations of S0(4,1). 
DI commutes with D2, and their Casimir operators are equal. D~ c S0(6,1) 
is considered to be the 'internal' de Sitter algebra, while Dz, which com- 
mutes with S0(6,1), is interpreted as the symmetry algebra of physical 
space-time. Another difficulty with unifications is that in choosing a 
complete set of commuting operators to construct an I.R., it is not always 
possible to have the desirable operators of D and S commuting with each 
other. Although it is inevitable for these reasons that algebras more general 
than unifications should be considered, the present study of unifications is 
necessary to indicate whether the results on the mass spectrum are reasonable, 
and to help in the formulation of new criteria for non-invariance algebras. 

In Section 2 the S0(6, 1) algebra is considered, and bases are chosen for 
the relevant subalgebras. In Section 3, a unitary LR. of S0(6,1) is con- 
structed, and on restriction to SU(3) it is shown that the infinite dimensional 
representation contains every representation of SU(3) just once. Section 4 
contains the analysis of the mass-squared operator, showing that its 
diagonal matrix elements give accurate mass formulae for the octets of 
1- and 2 + meson resonances. 

2. A Basis for the S0(6,1) Algebra 

S0(6,1) is the group of transformations which leave invariant the 
quadratic form, 6 

--X0 2 -~- ~ Xa 2 
a-I  
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and the generators LaD (A, B = 0, 1, .. . ,  6), where LAB = --LBA satisfy the 
usual commutat ion relations for the algebra of a pseudo-orthogonal group, 
namely, 

[LAn, LcD] = i(gAc LB~ + g,oLac - gaDLBc -- gBcLao) (2.1) 

the metric tensor gKL being defined by gKc = 0, K ~ L and 

-g00 -- gl i . . . . .  = g66 - 1 

S0(6,1) contains S0(6), which is locally isomorphic to SU(4), as a 
subalgebra, and a basis for the latter is given below. 

T1 = �89 - L15) 

V 1 = �89 - L45 ) 
UI = �89 + LI 6) 

F 1 = 1-(L24 + LI6) 

G 1 = �89 + L36) 

CI = �89 + L I  5) 

7"2 = �89 -- L25) 

V 2 -~ �89 + L56) 

U z = �89 - L26 ) 
F 2 = �89 + L26) 

G 2 = �89 + L56) 
C2 ~- �89 + L25) 

T 3 = �89 - L35 ) 

Y =  �89 2 + L35 -- 2L46) 
Z = �89 + L35 + L46) 

The first twelve may be combined in the usual way to give the raising 
and lowering operators, E~ -+ while the latter three provide the H1, of a 
Cartan-Weyl basis. It  can easily be seen that T, U, V, and Y, close on an 
SU(3) subalgebra, with T3 representing the third component  of isospin, 
and Y the hypercharge. Furthermore Z, the ' charm'  operator of SU(4) 
theories, commutes with SU(3). 

The other subalgebra of interest, namely S0(4,1) may be chosen to be 

{L~; /x ,v  = 0, 1,2,3,5,/x q: v} 

Of  course there are other bases for S0(4, 1) but the above choice is 
deliberate for the following reason. The spectrum of Cz is to be examined, 
and since the isospin algebra lies entirely within SO(4,1), the result is 
simplified by precluding mass splitting within an isomultiplet. 

To be more Specific, the following identification is made: 

Momenta  P .  =Lus  1 
Space-time rotations M ~  = Lu~ J Iz' v = 1,2, 3, 0 

The mass-squared operator is then 

~2C2 
M 2 -~s (P~,P~' + �89 ~)  

It may be seen that the difficulty mentioned in Section 1 has arisen, 
namely that the generators of SO(4,1) do not commute with T3, Y, or Z, 
implying that the internal quantum numbers are not relativistically invariant. 
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Vigier's argument must be invoked so that it is only the internal de Sitter 
transformation which can change the internal quantum numbers. 

3.1. I .R.  of  SO(6,1) 

S 0 ( 6 , 1 )  is one of the real forms of the complex simple Lie algebra B 3, 
which is of rank three and has twenty-one elements in a basis. Consequently 
a set of twelve commuting operators is necessary to specify completely any 
state within an I.R. In this case they are chosen to be the invariants of the 
algebras mentioned in the following chain : 

SO(6, 1) ~ SU(4) ~ SU(3) @ Ufl)z = SU(2) | U(l)r  = U(1)r3 (3.1.1) 

The representation to be constructed is akin to that used in the group 
theoretical description of the non-relativistic hydrogen atom, and the 
harmonic oscillator. In these problems the non-invariance groups are 
SO(4,1) and SU(3,1) respectively, whose representations are infinite 
towers of the symmetric tensor representations of the corresponding 
in~ ariance groups, viz. SO(4) and S U ( 3 ) .  

The symmetric tensor, or most degenerate representations of SO(6) are 
described by a single row of boxes in a Young diagram. They have been 
derived explicitly by Raczka et al. (1966), although the diagonalisation is 
not as shown in (3.1.1). The easiest way to construct the desired representa- 
tion is to extend a result of Beg & Ruegg (I965) who have found'the basis 
functions for all SU(3) representations as harmonic functions on a five- 
dimensional surface of a sphere, $5, embedded in a six-dimensional 
Euclidean space E 6. 

The unit sphere $5 may be parametrised in the following way: 

Z 1 = X 4 q-  i x  6 = re~e~ cos 0 
Z z  = x3 + ix5 = r e ~2 sin 0 cos 
Z3 = x t  + ixz = r e ~4'3 sin 0 sin ~: (3. 1,2) 

7"/" 

0 ~< 0, sc~<~; 0 < ~k <- 27r ,  k = 1 , 2 , 3 ;  r = l  

It is easily seen that $5, i.e. 

Z k Z k *  = xa . 'ca  = r 2 = 1 

is invariant under the action of SO(6) as well as SU(3). The invariant 
metric G u on $5 is then given by 

d s " =  FdZlr2 + [dz212 + Idz312 
= dO z + cos 20d~l 2 + sin 20(d~ z + cos z ~:d~2 z + sin 2 ~d~32) 

The basis functions for the I.R. of SO(6) are the eigenfunctions of the 
Laplace-Beltrami operator on $5, 

12 ~ / J/2 . .  0 ) 
A , = G  - /  ~fi~l~a a " ~ j . ;  i , j = 1 , 2 , 3 , 4 , 5  

where G = det (Gu), G u -= (G~l),j, and {r/} = 0, s c, ~k. 



A SPECTRUM GENERATING ALGEBRA FOR MESON RESONANCES 457  

The eigenvalues of As are -n(n + 4), n being a positive integer, so that 
the equation remaining to be solved is 

A 5 Y ,+n(n+4)  Y,=O 

which is identical to the equation for the basis functions found by Raczka 
et al. (1966). However, the method of solution is different, in this case, to 
bring out the diagonalisation (3.1.1). The solution is found to be the 
product of two Wigner d-functions weighted by cosec 0, i.e. 

~(p+q+|) 
Y - 7 jp'q = cosec 0 d(20) n - -  T , T 3 , Y  

~ ( p - q - 3 Y + 6 T + 3 ) , ~ ( p - q - 3 Y - 6 T - 3 )  

T 

. d(2~) .exp�89 1 @ ~2 -t- ~3) 
� 89  + �89 T 3 

�9 expir3(~2 - ~3)-exp�89 Y(-25b, + ~: + ~3) 

where p + q = n, and �89 - q) is the eigenvalue of the charm operator Z. 
(p,q) is the pair of positive integers which specify an I.R. of SU(3). For 
fixed n, the set of functions Y, is irreducible under SO(6). The idea now is 
to construct a representation of S0(6,1) on the space of functions 

Z) Y,, (3.1.3) 
n=0 

but before doing this, some properties of the SO(6) representation will be 
discussed. 

3.2. The Restriction of the SO(6) Representation to SU(3) 

The functions Y, (n fixed) may be expressed as 

Y,:= @ ~,P'~ 
p , q ; p + q ~ n  

where for fixed p and q, ~b p, q is irreducible under SU(3), In the chain (3.1.1) 
there is only one additive quantum number which can distinguish between 
different I.R.'s of SU(3) Contained in an I.R. of SO(6), namely the eigen- 
value Z of the charm operator which goes in integer steps from -n/2 to 
+n/2. Since n = p  +q is fixed, when a value for Z = � 8 9  is chosen, 
both p and q are determined. It follows that there is only one representation 
of SU(3) corresponding to each value of �89 - q). Clearly, as n takes all 
positive integral values (as it will do in the S0(6,1) representation) all the 
representations of SU(3) occur just once. 

It can easily be shown that the n-symmetric tensor representations of 
SO(6) correspond to those representations of SU(4), described by a Young 
diagram consisting of two rows of n boxes. Hence it is possible to use well- 
known results (Amati et al., 1964) on SU(4) to give the dimensions of the 
representations, and their decomposition on restriction to SU(3). These 
are summarised in Table 1 for a few values of n. 
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TABLE I. The dimensions of the symmetric tensor representations of S0(6) and their 
decomposition w.r.t. SU(3). 

n Dim. of SO(6) rep. Decomposition SU(3) 

0 1 1 
1 6 3 + 3  
2 20 6 + 8 + 6  
3 50 10 + 15 '+  15' + 10 
4 105 15 + 2 4 + 2 7 + 2 4 +  15 

3.3 Generators for the Hermitian LR. of  S0(6, 1) 

To realise a representation of S0(6, 1) on the space of functions (3.1.3), 
the action of the generators LAB must be specified. The SO(6) subalgebra 
L,b (a,b = 1,2 . . . . .  6) may be represented by differential operators of the 
form 

Lab=i(xb O Xa 3 ~ 

where the x~ are defined in (3.1.2); and by using the spherical parametrisa- 
tion (3.1.2) with 0 ~< r ~ o3 the Lab may be recast in the form 

5 O 
L.v = ~ fdr/j) (3.3.1) 

i= ~ 0rli 

(3.3.1) is independent o f t  and 0/0r as expected, since the Y, are independent 
o f r .  

The specification of the generators L0~ is more involved, and is accom- 
plished by using the methods of Budini (1966) or Bander & Itzykson (1966). 
Consider the stereographic projection from E 6 to the six-dimensional 
surface of a hyperboloid H6, defined by 

2cXa c z + X 2 

J'a C2 -- X2,  YO c2_ xZ (3.3.2) 

where c is a constant. The seven-vector y lies on the hyperboloid, since 

-yo 2 + 3,~3,~ = 1 (3.3.3) 

The group leaving (3.3.3) invariant is S0(6,1) with generators rep- 
resented by 

O 
L.b = -iy~ ~ -}- iyb 

(3.3.4a) 
a 0 

L0~ = 1>o + '>a 
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Using (3.3.2), the latter give 

0 0 
Lab = --ix. ~ + ix~ ~x~ 

Lo, = - i  2c OXa + i xa ff~xe 

(3.3.4b) 

An inner product is defined by 

(Y o, Yo) = f + Yo. yo 

where d/~ is the surface element on S~, i.e. 

d/z = cos 0 sin 30sin~cos~dOd~d(o I dd?2d~3 

However (3.3.4a) and (3.3.4b) are hermitian not with respect to this 
measure, but with respect to 

d y o  cly~ . . . cb ,~  

In order to take account of the different measures, operators VA~ are 
defined by 

VAB = ULa~ U -I 
where 

5 Xa Voa = Lo,, + T i -  
c 

This gives 

/ 2c ,,5/2 

 =t TA 
3 3 

V.b = iXa ox b + ixb ~ (3.3.5) 

=_i(C2 + xZ) O Xa ~ O~ a ~, 
2c Ox, + i--c x~ + 5i , (3.3.6) 

d 

The choice x2=  c2= 1 ensures that the representation is based on the 
spherical harmonics on $5, since this removes the O/Or dependence of 
Voa, and the Vo~ become 

i 0 0 s Voo = - ~ + ixo ~ x ~  + ~ixo (3,3.7) 
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(3.3.5) and (3.3.7) are now hermitian with respect to the measure d/z. The 
operators V01, V0:, V03 and V05 are given explicitly since they will.be used 
in the mass-squared operator in the next section. They are 

gol =-icr -icr 0 Sr O0 sO o~+isOs~Or 
5 "  t + s z c % s 0 s ~ :  

~Zoz=__isq~3S~C03_o__iS~ 0 . Cr 0 a~ ~ s ~ U ~  + ~ i s ~ s ~  

V03 = - i c 4 2 c ~ : c 0 0  + icr O 
sO 0~: 

sr a 
+ i s o c ~  + ~ i c r  Oc~ 

O iSCzSs c 3 . c42 0 
V~ sO O~ l-Z~c-~O~z+~isr (3.3.8) 

where c - cos, s - sin. 

4.1. The Mass-Squared Operator 

From the C.R. (2.1) it can be seen that the mass-squared operator M z 
commutes with T 2, T3, Y and Z; thereby causing no transitions between 
the states of an SU(3) or even SU(4) multiplet. However M z does not 
commute with the Casimir operators of SU(3) so that it is possible to have 
mixing between different multiplets, and, from the general form of the 
operators V0, (3.3.7), it can be anticipated that the general non-zero matrix 
elements o f M  2 are of the form (p,q !MZ[p,q) and (p  • 1, q • 1 [MZ[p,q), 
where IP,q) is the spherical harmonic CP' q. 

At this point it must be noted that the only unknown parameter in M 2 
is the multiplicative factor ;~2 = h 2 c2/R E which is the natural unit of (mass) 2 
in a de Sitter space-time. This is obviously very small since R is so large, 
so that for a sensible definition of mass, it is necessary to scale up M 2 by 
multiplying by a factor R2/rZ; where r is of the order of a Compton wave- 
length of an elementary particle. The mass-squared operator then becomes 

M 2 = ~2(Vg. + V& + V& + V~, - V~. - v~3 - v ~  - V~, - V~, - v~, )  

where tz z =  hZcE/r z and must be determined by comparison with experi- 
ment. Alternatively, this may be written 

M ~ =ff2(V~, + V~2 + V~3 + V& - 2T 2 -  2 C b  

where C 2 = C1 z + Ca z + Ca ~- and C3 = �89 + L35). C z is always diagonal 
in the representation being considered, and in fact it may be shown that 
it has the same eigenvalues as T 2, i.e. 

c ~ r  ~,~ : r ( r +  1)r 
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Now consider the other part of M 2. Using (3.3.8), 

v. = + vh + vL + vL 

8 2 I 8 2 1 0 2 1 0 2 
= --C 2 0 

aO 2 S20a~  2 $20 $2 r a,t~32 S20C2 ~ a(fi22 

0 1 a 
+ 3  (2s20 - 1) ~-O + si} [tan f - cot f] ~ 

The ~ dependence of this operator may be eliminated by noting that, 

0 2 8 1 0 2 I 0 2 
4T 2 = - 0~- ~ + (tan ~: - cot ~:) 0-~ C 2 ff 0~2 2 S 2 r 0~)3 2 

so that 

s~ 0 4T2 s c 20 + V2 =-c200~2 § 3 (2s20-  l ) ~ - t  s20 2~ s20 + 2  

This expression can be simplified even further using the fact that/2,  the 
second-order invariant of SU(3), with eigenvalues 

1 2 g(p + qZ + pq + 3p + 3q) 
is given by 

02 ~ 4 T  2 y2  
1212 = - ~0 ~ - (3 cot 0 - tan 0) ~ + s~00 + c~00 + �89 - q)2 

Using this to define 02/002, it follows that 

M2=/xz [612 + @ + (612 + -a~) c 20 + 2sOcO~-J- (p  - q)2c2 0 

2T 2 _ 2c 2 _ y2] + 

To define the action of M z on ~b". q it is necessary to consider only 

{(p+q+l) 
M 2 cosec 0 d(20) 

{(p-q-3Y I-6T+3),{(l~-q~3Y-6T-3) 

which can be evaluated using standard manipulations with d-functions. 
These are quoted in the appendix to this paper. At this point the argument 
will be limited to the case p = q since it will be seen that this formalism 
applies to meson multiplets. Now, using equations (A.1), (A.2), (A.3), and 
the normalised spherical harmonics on Ss i.e. 

2[(2T + 1) (p + q + 2)] ~/2 ~b~'.qr,, r 
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the diagonal matrix elements of M 2 are found to be 

l 1 (pIM21p) = iz z �89 + 1)(2p + 3) + 8(2p~ 1)(2p + 3) 

1 
+ z~_ yzI�89 8(2p+ l)(2p+ 3) ] 

+ : c ( r+  l) 2(2p + 1)(2p + 3) 

For a physically interesting multiplet, e.g. the octet of SU(3), p = 1 and 
(4.1.1) reduces to 

( M  2) 33_0~/~2 s9 2 = - -  - y 6 / z  IT (T+  1) +~6-r ] (4.1.2) 

Note that 2~6 is very close to �88 and hence there is a similarity between 
(4,1.2) and the Gel l -Mann-Okubo mass formula for mesons, 

( M  2) = 34o 2 - b2[T(T+ 1) - �88 (4.1.3) 

where Mo z and b 2 are independent parameters, which means that (4.1.2) 
has more predictive power than (4.1.3). The latter is known to fit the 
pseudoscalar mesons very well, but gives poor results when applied to the 
octet of vector mesons. This is thought to be due to ~o - ~ mixing. However 
(4.1.2) does fit the vector mesons with the physical (~ in the octet. With 
~2 = 0.09914 GcV 2, 

p2 = 0.615 (0.587) GeV z 

K .2 = 0.808 (0.797) GeV 2 

~2 = 1.004 (1.039) GeV z 

showing good agreement with the experimental values (Rosenfeld, 
1969) in brackets. It is a little unfortunate that the singlet (p = 0) is not 
the ~o-particle, since M 2 = 0.414 GeV 2 for the above value of/z z. 

4.2. The EigenvaIues of M 2 

The only non-zero off-diagonal matrix elements of M 2 are found to be 
( forp  = q) 

( p - i [ M 2 [ p )  tx2(2pZ+2P+~) [P+ I] i/z 
= 4(p + 1) (2p 

. [ ( 2 p -  Y-2T) (2p+ Y-2T) (2p+ Y+ 2T+ 2)(2p- Y + 2 T + 2 ) ]  1/2 

(4.2.1) 
and 
(p + l[MZ[p ) /~2(2p2 + 6p + 3@_) (p + 1,~L/z 

4(p + 1) (2p + 3) " \ ~ - 2 ]  

. [ ( 2 p -  Y -  2T + Z)(2p + Y -  2T + 2)(2p + Y + 2T + 4)(2p- Y -  2T+ 
-t- 4)] 1/2 (4.2.2) 
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the hermiticity of M z may be checked by putting p = p' - 1 in the latter 
to show that ( p -  llM2]p)= (plMalp- 1). In view of the good agree- 
ment with experiment found in the previous section, it might be expected 
that the off-diagonal elements are small compared to those on the diagonal. 
This is not the case, and both (412.1) and (4.2.2) are monotonically increasing 
functions of p, ~p2 for large p, just like (M2). The M e matrix may be 
diagonalised, by approximating the infinite dimensional matrix by a finite 
dimensional one of order (p + 1), but because the off-diagonal elements 
are so large, the convergence of the eigenvalues for increasing p is slow. 
At about p = 70, the variation with p is slow enough for the asymptotes 
mZ(T, Y) to be found by means of the parametrisation 

mZ(T, Y) + ;(T, Y) + ~(T, Y) (4.2.3) 

Table 2 shows the variation in the eigenvalues of interest with the size of 
the ma*rix. (The factor/,2 has beensuppressed). 

TABLE 2. The eigenvalues of particle masses varying with the dimension N of the 
approximating matrix. 

N Singlet S 2 (~2 p2 K,= 

t0 2.796 4.869 3.176 3.654 
20 2.655 4-088 2-893 3.198 
30 2.595 3-785 2.781 3.019 
40 2.560 3"613 2.717 2.918 
5 0  2.539 3.501 2.675 2.853 
60 2.521 3.418 2.647 2.897 
70 2.508 3.356 2-627 2.771 

The ratios q52/02, ~ 2 / K ' 2 ,  K*Z/p z and ~2/s2 also form asymptotic sequences 
with increasing N. Using a formula of the form (4.2.3), it was found that 
c~2/K*~= 1.155, K*2/p z= 1.024. These imply that ~2/p2 = I.I8. An in- 
dependent check on this quantity gave 4)2[p 2 = 1.17. Also, q52/s 2 = 1.21. 

However, these ratios do not fit the vector mesons, or any other known 
octet of  mesons. In addition to this result, it may be argued that even the 
concept of an SU(3) multiplet has disappeared in the diagonalisation 
process. The only consolation is that a definite splitting in the mass-squared 
eigenvalues, varying with T and Y, has been established. The fact that the 
expectation values give agreement with experiment may be indicating that 
an algebra which is larger than S0(6,1), and which avoids the intersection 
of S0(4, I) and SU(3), is necessary. 
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4.3. The Octet o f  2 + Mesons 

I t  can easily be checked that  the C.R. of  the opera tors  representing 
S0(6,  1) are unaffected by the addit ion of  a te rm propor t iona l  to x ,  to 
V0~, i.e. 

Vo. -+ Voa + 7Xo (4,2.4) 
and the representat ion remains hermit ian if 7 is real. The  evaluat ion of  
( M  z) with the subst i tut ion (4.2.4) gives a two pa ramete r  ~ 2 , 7 )  mass  
formula ,  which when restricted to the octet, fits the 2 + mesons (Az, KN, f ' ) .  
The  mass-squared  expectat ion values are 

KN2 . 2 /16 3  + 3 .2) 

y,2 = ~2G_Sa + ~_~,~) (4.2.5) 

which lead to the sum rule 

36KN 2 = 2 I f  'z + 13Az 2 (4.2.6) 

with left-hand side = 72.36 GeV 2 and r ight-hand side = 70.19 GeV 2. y 2 
m a y  be est imated f rom the ratio of  any two equat ions in (4.2.5), giving 
3, 2 ~ 3.0./x 2 then turns out  to be twice the value found for the vector  mesons,  
i.e./~2 = 2  • 0.09914 GeV 2. 

For  the singlet S, 
s ~ = ~ 2 ( ~  + ~7 ~) 

and the above  values f o r / z  2 and y 2 give S 2 =  1.22 GeV 2. There  appears  
to be no 2 + object  recorded at this mass  value but  (this m a y  be just  a 
coincidence) S 2 ~- 2co 2 showing that  if  the original est imate of/z 2 is adopted,  
the mass  of  the ~o-particle is predicted. 

An alternative t rans format ion  which leaves the representat ion unchanged 
is 

(t real), the factor  (1 =- 0 -1/2 being necessary because 

With the subst i tut ion (4.2.7), the expectat ion values of  M z in the octet 
become 

z _  P "2(31 - 130t) 
A2 5(1 - t )  

K s  2 _ ~2(163 - 4600  
20(1 - t) (4.2.8) 

/ z 2 ( |  5 2  - -  2700  
f ' ~  = 15(1 - t) 
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and by eliminating ,t~ 2 and t, the exact sum rule is 

4556KN 2 _- 2079f '2 + 2591A2 z 

which will be approximated by 

4"56KN z = 2 ' 08 f  '2 + 2"59A2 z (4.2.9) 

This is in excellent agreement with experiment, since left-hand side = 4-76 
GeV 2 and right-hand side = 4.76 GeV 2. 

It is worth noting that both sum rules (4.2.6) and (4.2.9) satisfy the octet 
of vector mesons, with the predictions 2 8 . 7 -  29.4 GeV 2 and 2 . 1 6 -  2.11 
GeV 2 respectively, when the particle labels are interchanged. From (4.2.8), 
t = - 0 . 1 1 5  and as before ~ z = 2  • 0.09914 GeV 2. However, with these 
values, the singlet state does not correspond to any known particle: 

$2 / , 2 (25 -60 t )  4.77/, 2 
6 ( 1 -  t) 

Discussion 

It is quite surprising that the algebra SO(6, 1), chosen for no other reason 
than that it is the smallest unification of S0(4,  I) and an internal symmetry 
algebra containing SU(3), should lead to such accurate mass formulae. 
Also there is a conceptual difficulty in understanding how a small curvature 
in space-time can be important in the region of an elementary particle. 
However, this would not be a difficulty if the no-go theorems on the 
spectrum are simply mathematical results with no reference to physics. 

An alternative interpretation of  this work would be to imagine that 
space-time has a very large curvature in the region occupied by an elemen- 
tary particle. Such an idea has been suggested and examined by Barut & 
BOhm (1965) and B/Shin (1966) who were able to find a formula relating 
the masses and spins of particles and their resonances. If this approach is 
adopted, the scaling-up procedure described in Section 4.1 becomes 
unnecessary, and the prediction for the radius of an elementary particle is 
R ~ I 0  -13 cms. 

It must be noted that there is no a priori way of telling which particular 
octets of mesons are being described by the representation used here, since 
the analogy of the spin operator for the de Sitter algebra is zero. Perhaps 
it may be possible to include spin in a more general representation, and 
also find a mass formula for spin 0 mesons. In a forthcoming paper, a 
tentative extension of this scheme to include baryon resonances will be 
discussed. 
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A P P E N D I X  

The  s tandard  results on d-functions needed to evaluate the matr ix  
elements of  M 2 are:  

cos20d}, . , (20)= [ ( / +  m)( l  l(2lm)(l+j)(l-J)]l/2+ 1) d}~-~(20) + / ( ~ m J  d}.,(20) 

+ [ ( l + m + I ) ( / - m + l ) ( / + J + l ) ( / - J + l ) ] ~ / 2 d l + ~ ( 2 0 )  (A.I )  
( 2 l +  1 ) ( / +  1) s,., 

sin 20 d} ,,(20) - i[(l + m) (l + m + 1) (l + j + 1) (l - j  + 1)]1/2 d t+ l t~0~ 
' ( l +  1 ) ( 2 l +  1) J' . , t" j 

ij[(l + m ) ( l -  m + 1)] l/z 
- t q  + 1) dL. , (2o)  

_ i[(l - m) (l -- m + 1) (1 + j )  (l _ j ) ] t /2  d}_~(20) (A.2) 
l ( 2 l +  1) 

where 

1 
- s in0 [ ( 2 j -  1) d~. ' (20) - (2m + l ) d L ' ( 2 0 ) c o s 2 0  

- 2i~" sin 20 d},m_ 1(20)] 

~,. = [ ( /+  m ) ( l -  m + 1)] 1/2 

(A.3) 


